Publications

Aging Induces an Nlrp3 Inflammasome-Dependent Expansion of Adipose B Cells That Impairs Metabolic Homeostasis.
Camell CD, Günther P, Lee A, Goldberg EL, Spadaro O, Youm YH, Bartke A, Hubbard GB, Ikeno Y, Ruddle NH, Schultze J, Dixit VD
Cell Metab. 2019 Dec 3;30(6):1024-1039.e6. doi: 10.1016/j.cmet.2019.10.006. Epub 2019 Nov 14.

Abstract:

During aging, visceral adiposity is often associated with alterations in adipose tissue (AT) leukocytes, inflammation, and metabolic dysfunction. However, the contribution of AT B cells in immunometabolism during aging is unexplored. Here, we show that aging is associated with an expansion of a unique population of resident non-senescent aged adipose B cells (AABs) found in fat-associated lymphoid clusters (FALCs). AABs are transcriptionally distinct from splenic age-associated B cells (ABCs) and show greater expansion in female mice. Functionally, whole-body B cell depletion restores proper lipolysis and core body temperature maintenance during cold stress. Mechanistically, the age-induced FALC formation, AAB, and splenic ABC expansion is dependent on the Nlrp3 inflammasome. Furthermore, AABs express IL-1R, and inhibition of IL-1 signaling reduces their proliferation and increases lipolysis in aging. These data reveal that inhibiting Nlrp3-dependent B cell accumulation can be targeted to reverse metabolic impairment in aging AT.


Body image in older women: a mediator of BMI and wellness behaviors.
Kilpela LS, Verzijl CL, Becker CB
J Women Aging. 2019 Nov 21:1-14. doi: 10.1080/08952841.2019.1692629. [Epub ahead of print]

Abstract:

Negative body image is prevalent among mid- and late-life women. In younger women, negative body image is associated with reduced quality of life (QOL) when controlling for body mass index (BMI), and mediates the relationship between obesity and emotional wellbeing. Yet, much remains unknown about body image in older populations. In our sample of women aged 50-86 (N = 181), negative body image mediated the relationship between BMI and sleep, all four domains of QOL, negative affect, nutritious food consumption, and psychosocial impairment, but not enjoyment of physical activity. Findings suggest negative body image impacts the wellbeing of older women.


Deficiency in the DNA repair protein ERCC1 triggers a link between senescence and apoptosis in human fibroblasts and mouse skin.
Kim DE, Dollé MET, Vermeij WP, Gyenis A, Vogel K, Hoeijmakers JHJ, Wiley CD, Davalos AR, Hasty P, Desprez PY, Campisi J
Aging Cell. 2019 Nov 18:e13072. doi: 10.1111/acel.13072. [Epub ahead of print]

Abstract:

ERCC1 (excision repair cross complementing-group 1) is a mammalian endonuclease that incises the damaged strand of DNA during nucleotide excision repair and interstrand cross-link repair. Ercc1-/Δ mice, carrying one null and one hypomorphic Ercc1 allele, have been widely used to study aging due to accelerated aging phenotypes in numerous organs and their shortened lifespan. Ercc1-/Δ mice display combined features of human progeroid and cancer-prone syndromes. Although several studies report cellular senescence and apoptosis associated with the premature aging of Ercc1-/Δ mice, the link between these two processes and their physiological relevance in the phenotypes of Ercc1-/Δ mice are incompletely understood. Here, we show that ERCC1 depletion, both in cultured human fibroblasts and the skin of Ercc1-/Δ mice, initially induces cellular senescence and, importantly, increased expression of several SASP (senescence-associated secretory phenotype) factors. Cellular senescence induced by ERCC1 deficiency was dependent on activity of the p53 tumor-suppressor protein. In turn, TNFα secreted by senescent cells induced apoptosis, not only in neighboring ERCC1-deficient nonsenescent cells, but also cell autonomously in the senescent cells themselves. In addition, expression of the stem cell markers p63 and Lgr6 was significantly decreased in Ercc1-/Δ mouse skin, where the apoptotic cells are localized, compared to age-matched wild-type skin, possibly due to the apoptosis of stem cells. These data suggest that ERCC1-depleted cells become susceptible to apoptosis via TNFα secreted from neighboring senescent cells. We speculate that parts of the premature aging phenotypes and shortened health- or lifespan may be due to stem cell depletion through apoptosis promoted by senescent cells.


Exercise preserves muscle mass and force in a prostate cancer mouse model.
Patel DI, Abuchowski K, Sheikh B, Rivas P, Musi N, Kumar AP.
Eur J Transl Myol. 2019 Nov 12;29(4):8520. doi: 10.4081/ejtm.2019.8520. eCollection 2019 Oct 29.

Abstract:

The purpose of this study was to examine the effects of exercise in modulating biomarkers of sarcopenia in a treatment naïve transgenic adenocardinoma of the mouse prostate (TRAMP) model. Thirty TRAMP mice were randomized to either exercise (voluntary wheel running) or no-treatment control group for a period of 20 weeks. During necropsy, gastrocnemius muscles and prostate tumors were harvested and weighed. Gastrocnemius concentrations of myostatin, insulin-like growth factor (IGF)-1 and tumor necrosis factor (TNF)-α were quantified. Exercise mice had greater muscle mass than controls (p=0.04). Myostatin was significantly lower in the exercise group compared to controls (p=0.01). Exercise mice maintained forelimb grip force while control mice had a significaint decrease (p=0.01). No significant difference was observed in pre-post all limb grip strength. Further, forelimb and all limb grip strength was negatively associated with tumor mass (p<0.01).


Hepatic posttranscriptional network comprised of CCR4-NOT deadenylase and FGF21 maintains systemic metabolic homeostasis
Morita M, Siddiqui N, Katsumura S, Rouya C, Larsson O, Nagashima T, Hekmatnejad B, Takahashi A, Kiyonari H, Zang M, St-Arnaud R, Oike Y, Giguère V, Topisirovic I, Okada-Hatakeyama M, Yamamoto T, Sonenberg N
PNAS. 2019 Apr 16;116(16):7973-7981. doi: 10.1073/pnas.1816023116. Epub 2019 Mar 29.

Abstract

Whole-body metabolic homeostasis is tightly controlled by hormone-like factors with systemic or paracrine effects that are derived from nonendocrine organs, including adipose tissue (adipokines) and liver (hepatokines). Fibroblast growth factor 21 (FGF21) is a hormone-like protein, which is emerging as a major regulator of whole-body metabolism and has therapeutic potential for treating metabolic syndrome. However, the mechanisms that control FGF21 levels are not fully understood. Herein, we demonstrate that FGF21 production in the liver is regulated via a posttranscriptional network consisting of the CCR4-NOT deadenylase complex and RNA-binding protein tristetraprolin (TTP). In response to nutrient uptake, CCR4-NOT cooperates with TTP to degrade AU-rich mRNAs that encode pivotal metabolic regulators, including FGF21. Disruption of CCR4-NOT activity in the liver, by deletion of the catalytic subunit CNOT6L, increases serum FGF21 levels, which ameliorates diet-induced metabolic disorders and enhances energy expenditure without disrupting bone homeostasis. Taken together, our study describes a hepatic CCR4-NOT/FGF21 axis as a hitherto unrecognized systemic regulator of metabolism and suggests that hepatic CCR4-NOT may serve as a target for devising therapeutic strategies in metabolic syndrome and related morbidities.


Age-related changes in the marmoset gut microbiome
Reveles KR, Patel S, Forney L, Ross CN
American Journal of Primatology. 2019 Feb;81(2):e22960. doi: 10.1002/ajp.22960. Epub 2019 Feb 25.

Abstract

The gut microbiome is known to play a significant role in human health but its role in aging remains unclear. The objective of this study was to compare the gut microbiome composition between young adult and geriatric non-human primates (marmosets) as a model of human health and disease. Stool samples were collected from geriatric (8+ years) and young adult males (2-5 years). Stool 16S ribosomal RNA V4 sequences were amplified and sequenced on the Illumina MiSeq platform. Sequences were clustered into operational taxonomic units and classified via Mothur’s Bayesian classifier referenced against the Greengenes database. A total of 10 young adult and 10 geriatric marmosets were included. Geriatric marmosets had a lower mean Shannon diversity compared with young marmosets (3.15 vs. 3.46; p = 0.0191). Geriatric marmosets had a significantly higher mean abundance of Proteobacteria (0.22 vs. 0.09; p = 0.0233) and lower abundance of Firmicutes (0.15 vs. 0.19; p = 0.0032) compared with young marmosets. Geriatric marmosets had a significantly higher abundance of Succinivibrionaceae (0.16 vs. 0.01; p = 0.0191) and lower abundance of Porphyromonadaceae (0.07 vs. 0.11; p = 0.0494). In summary, geriatric marmosets had significantly altered microbiome diversity and composition compared with young adult marmosets. Further studies are needed to test microbiome-targeted therapies to improve healthspan and lifespan.


Rapamycin and Alzheimer’s disease: Time for a clinical trial?
Kaeberlein M, Galvan V
Sci Transl Med. 2019 Jan 23;11(476). pii: eaar4289. doi: 10.1126/scitranslmed.aar4289.

Abstract:

The drug rapamycin has beneficial effects in a number of animal models of neurodegeneration and aging including mouse models of Alzheimer’s disease. Despite its compelling preclinical record, no clinical trials have tested rapamycin or other mTOR inhibitors in patients with Alzheimer’s disease. We argue that such clinical trials should be undertaken.


Effects of intravenous AICAR (5-aminoimidazole-4-carboximide riboside) administration on insulin signaling and resistance in premature baboons, Papio sp.
Blanco CL, Gastaldelli A, Anzueto DG, Winter LA, Seidner SR, McCurnin DC, Liang H, Javors MA, DeFronzo RA, Musi N
PLoS one. 2018 Dec 12;13(12):e0208757. doi: 10.1371/journal.pone.0208757. eCollection 2018.

Abstract:

Premature baboons exhibit peripheral insulin resistance and impaired insulin signaling. 5′ AMP-activated protein kinase (AMPK) activation improves insulin sensitivity by enhancing glucose uptake (via increased glucose transporter type 4 [GLUT4] translocation and activation of the extracellular signal-regulated kinase [ERK]/ atypical protein kinase C [aPKC] pathway), and increasing fatty acid oxidation (via inhibition of acetyl-CoA carboxylase 1 [ACC]), while downregulating gluconeogenesis (via induction of small heterodimer partner [SHP] and subsequent downregulation of the gluconeogenic enzymes: phosphoenolpyruvate carboxykinase [PEPCK], glucose 6-phosphatase [G6PASE], fructose- 1,6-bisphosphatase 1 [FBP1], and forkhead box protein 1 [FOXO1]). The purpose of this study was to investigate whether pharmacologic activation of AMPK with AICAR (5-aminoimidazole-4-carboximide riboside) administration improves peripheral insulin sensitivity in preterm baboons. 11 baboons were delivered prematurely at 125±2 days (67%) gestation. 5 animals were randomized to receive 5 days of continuous AICAR infusion at a dose of 0.5 mg·g-1·day-1. 6 animals were in the placebo group. Euglycemic hyperinsulinemic clamps were performed at 5±2 and 14±2 days of life. Key molecules potentially altered by AICAR (AMPK, GLUT4, ACC, PEPCK, G6PASE, FBP1, and FOXO1), and the insulin signaling molecules: insulin receptor (INSR), insulin receptor substrate 1 (IRS-1), protein kinase B (AKT), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) were measured using RT-PCR and western blotting. AICAR infusion did not improve whole body insulin-stimulated glucose disposal in preterm baboons (12.8±2.4 vs 12.4±2.0 mg/(kg·min), p = 0.8, placebo vs AICAR). One animal developed complications during treatment. In skeletal muscle, AICAR infusion did not increase phosphorylation of ACC, AKT, or AMPK whereas it increased mRNA expression of ACACA (ACC), AKT, and PPARGC1A (PGC1α). In the liver, INSR, IRS1, G6PC3, AKT, PCK1, FOXO1, and FBP1 were unchanged, whereas PPARGC1A mRNA expression increased after AICAR infusion. This study provides evidence that AICAR does not improve insulin sensitivity in premature euglycemic baboons, and may have adverse effects.


NFκB Regulates Muscle Development and Mitochondrial Function.
Valentine JM, Li ME, Shoelson SE, Zhang N, Reddick RL, Musi N
J Gerontol A Biol Sci Med Sci. 2018 Nov 13. doi: 10.1093/gerona/gly262. [Epub ahead of print]

Abstract:

NFκB is a transcription factor that controls immune and inflammatory signaling pathways. In skeletal muscle, NFκB has been implicated in the regulation of metabolic processes and tissue mass; yet, its affects on mitochondrial function in this tissue are unclear. To investigate the role of NFκB on mitochondrial function and its relationship with muscle mass across the lifespan, we study a mouse model with muscle-specific NFκB suppression (MISR mice). In wild type mice there was a natural decline in muscle mass with aging that was accompanied by decreased mitochondrial function and mRNA expression of electron transport chain subunits. NFκB inactivation downregulated expression of PPARGC1A, while upregulating TFEB and PPARGC1B, as well as decreased gastrocnemius (but not soleus) muscle mass in early life (1-6 months old). Lower oxygen consumption rates occurred in gastrocnemius and soleus muscles from young MISR mice, whereas soleus (but not gastrocnemius) muscles from old MISR mice displayed increased oxygen consumption compared to age-matched controls. We conclude that the NFκB pathway plays an important role in muscle development and growth. The extent to which NFκB suppression alters mitochondrial function is age-dependent and muscle-specific. Lastly, mitochondrial function and muscle mass are tightly associated in both genotypes and across the lifespan.


Tau‐induced nuclear envelope invagination causes a toxic accumulation of mRNA in Drosophila
Cornelison GL, Levy SA, Jenson T, Frost B
Aging Cell. 2018 Nov 9:e12847. doi: 10.1111/acel.12847. [Epub ahead of print]

Abstract

The nucleus is a spherical dual-membrane bound organelle that encapsulates genomic DNA. In eukaryotes, messenger RNAs (mRNA) are transcribed in the nucleus and transported through nuclear pores into the cytoplasm for translation into protein. In certain cell types and pathological conditions, nuclei harbor tubular invaginations of the nuclear envelope known as the “nucleoplasmic reticulum.” Nucleoplasmic reticulum expansion has recently been established as a mediator of neurodegeneration in tauopathies, including Alzheimer’s disease. While the presence of pore-lined, cytoplasm-filled, nuclear envelope invaginations has been proposed to facilitate the rapid export of RNAs from the nucleus to the cytoplasm, the functional significance of nuclear envelope invaginations in regard to RNA export in any disorder is currently unknown. Here, we report that polyadenylated RNAs accumulate within and adjacent to tau-induced nuclear envelope invaginations in a Drosophila model of tauopathy. Genetic or pharmacologic inhibition of RNA export machinery reduces accumulation of polyadenylated RNA within and adjacent to nuclear envelope invaginations and reduces tau-induced neuronal death. These data are the first to point toward a possible role for RNA export through nuclear envelope invaginations in the pathogenesis of a neurodegenerative disorder and suggest that nucleocytoplasmic transport machinery may serve as a possible novel class of therapeutic targets for the treatment of tauopathies.


Filter publications