Publications

Metabolic consequences of long-term rapamycin exposure on common marmoset monkeys (Callithrix jacchus).
Ross C, Salmon A, Strong R, Fernandez E, Javors M, Richardson A, Tardif S
Aging (Albany NY). 2015 Nov;7(11):964-73. doi: 10.18632/aging.100843

Abstract

Rapamycin has been shown to extend lifespan in rodent models, but the effects on metabolic health and function have been widely debated in both clinical and translational trials. Prior to rapamycin being used as a treatment to extend both lifespan and healthspan in the human population, it is vital to assess the side effects of the treatment on metabolic pathways in animal model systems, including a closely related non-human primate model. In this study, we found that long-term treatment of marmoset monkeys with orally-administered encapsulated rapamycin resulted in no overall effects on body weight and only a small decrease in fat mass over the first few months of treatment. Rapamycin treated subjects showed no overall changes in daily activity counts, blood lipids, or significant changes in glucose metabolism including oral glucose tolerance. Adipose tissue displayed no differences in gene expression of metabolic markers following treatment, while liver tissue exhibited suppressed G6Pase activity with increased PCK and GPI activity. Overall, the marmosets revealed only minor metabolic consequences of chronic treatment with rapamycin and this adds to the growing body of literature that suggests that chronic and/or intermittent rapamycin treatment results in improved health span and metabolic functioning. The marmosets offer an interesting alternative animal model for future intervention testing and translational modeling.


Testing efficacy of administration of the antiaging drug rapamycin in a nonhuman primate, the common marmoset.
Tardif S, Ross C, Bergman P, Fernandez E, Javors M, Salmon A, Spross J, Strong R, Richardson A
J Gerontol A Biol Sci Med Sci. 2015 May;70(5):577-87. doi: 10.1093/gerona/glu101. Epub 2014 Jul 19.

Abstract

This report is the first description of dosing procedures, pharmacokinetics, biochemical action, and general tolerability of the antiaging drug rapamycin in the common marmoset, a small and short-lived monkey. Eudragit-encapsulated rapamycin was given orally to trained marmosets in a short-term (3 weeks) and a long-term (14 months) study. Circulating trough rapamycin levels (mean = 5.2 ng/mL; 1.93-10.73 ng/mL) achieved at roughly 1.0 mg/kg/day was comparable to those reported in studies of rodents and within the therapeutic range for humans. Long-term treated animals (6/8) indicated a reduction in mammalian target of rapamycin complex 1 signaling as noted by a decrease in the phospho rpS6 to total rpS6 ratio after 2 weeks of treatment. All long-term treated subjects had detectable concentrations of rapamycin in liver (4.7-19.9 pg/mg) and adipose tissue (2.2-32.8 pg/mg) with reduced mammalian target of rapamycin signaling in these tissues. There was no evidence of clinical anemia, fibrotic lung changes, or mouth ulcers. The observed death rate in the long-term study was as expected given the animals’ ages. The ability to rapidly and reliably dose socially housed marmosets with an oral form of rapamycin that is well tolerated and that demonstrates a suppression of the mammalian target of rapamycin pathway leads us to conclude that this species offers a viable model for rapamycin testing to establish safety and efficacy for long-term antiaging intervention.


Filter publications